

PIEZOMETER RING INSTALLATION, OPERATION & MAINTENANCE MANUAL

REVIEW AMCA BULLETIN 410 PRIOR TO INSTALLATION

This manual has been prepared to guide the users of an airflow measuring system using a piezometer ring in the proper installation, operation and maintenance procedures to ensure maximum equipment life with trouble-free operation. For safe installation, startup and operational life of this equipment, it is important that all involved with the equipment be well versed in proper fan safety practices and read this manual. It is the user's responsibility to make sure that all requirements of good safety practices and any applicable safety codes are strictly adhered to. Because of the wide variety of equipment covered in this manual, the instructions given here are general in nature. Additional product and engineering information is available at www.tcf.com.

SAFETY NOTICE

Refer to the safety section(s) in this manual prior to installing or servicing the fan. The most current version of this installation and maintenance manual can be found on our website at www.tcf.com/resources/im-manuals.

TABLE OF CONTENTS

Safety & Hazard Warnings	2
Shipping & Receiving	2
Handling	
Unit Storage	
Installation	
Maintenance	
Measurement of Airflow	12-14
Transducer Sizing for Piezometer Ring	-
Troubleshooting Guidelines	
Installation / Start-up Checklist	
Fan Maintenance Log	

SAFETY & HAZARD WARNINGS

For general safety practices for air moving equipment, see AMCA Bulletin 410. Twin City Fan & Blower offers many safety accessories. These safety devices include (but are not limited to) belt guards, shaft guards, inlet and discharge screens. The use and suitability of safety devices is the responsibility of the purchaser.

Facility related safety conditions include fans' accessibility and location. How easily can non-service personnel access the unit? Is the fan in a hazardous duty environment? Was the unit ordered for this duty? Other concerns must also be addressed. All fans should be powered through switches which are easily accessible to service personnel from the fan. Fan power must have the ability to be "locked out" by service personnel trained in lockout/tagout procedures per OSHA requirements (29CFR1910.147). When performing lockout, be aware of factors, such as building pressure and additional fans in the system that can influence unwanted fan rotation (wind milling). If you have any doubt about your ability to perform a task, seek a person qualified to do that task. Before any work is done on a fan, ensure that the fan is isolated from the electrical supply using a 'lockout/tagout system.'

Note: A stationary, non-rotating fan does not mean that the fan is isolated from the electrical supply. A non-rotating fan could be subject to controls or other circuit protection devices that may start the fan without notice.

The following safety precautions should be followed, where applicable:

- Do not attempt to slow a rotating impeller even when it is isolated from the electrical supply. Fan impellers have a high inertia
 and injury could result from an attempt to stop it. It is recommended that the impeller is isolated by closing off the inlet or
 outlet to prevent wind-driven rotation. If an impeller is chocked to prevent rotation, ensure that the chocks are removed prior
 to start up.
- Wear appropriate personal protective equipment. This may include protective clothing, eye protection, ear protection, respiratory equipment, hand and foot protection when installing or servicing the fan.
- Always use caution when entering a fan's air path. High velocity airflow can cause you to lose your balance.
- Motor, bearings and drives can be hot, and similarly if the fan is subject to processes that are hot, the fan housing could be hot.
- Fans are often used to move hazardous materials that could be dangerous. Always wear protective clothing and take precautions not to inhale dust/gases. If hazardous chemical vapors are present, respiratory equipment may be required.
- Sharp edges wear protective gloves when handling, installing or servicing a fan.
- Fans can operate at high decibel sound levels. Wear proper ear protection to protect from excessive noise levels.
- Access Doors Do not open access doors when fan is in operation. The effects of suction and air pressure could result in injury.
- When working around pulleys and belts, keep hands away from pinch points. This pertains to when the fan is under or off power.

Throughout this manual, there are a number of HAZARD WARNINGS that must be read and adhered to in order to prevent possible personal injury and/or damage to equipment. Two signal words "WARNING" and "CAUTION" are used to indicate the severity of a hazard and are preceded by the safety alert symbol. It is the responsibility of all personnel involved in installation, operation and maintenance to fully understand the warning and caution procedures by which hazards are to be avoided.

WARNING: Used when serious injury or death MAY result from misuse or failure to follow specific instructions.

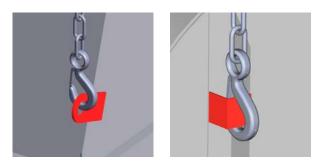
CAUTION: Used when minor or moderate injury or product / equipment damage MAY result from misuse or failure to follow specific instructions.

NOTICE: Indicates information considered important, but not hazard-related.

SHIPPING & RECEIVING

All Twin City Fan & Blower products are carefully constructed and inspected before shipment to insure the highest standards of quality and performance. Compare all components with the bill of lading or packing list to verify that the proper unit was received. Check each unit for any damage that may have occurred in transit. Any damage should be reported immediately to the carrier and the necessary damage report filed. Damage should be noted on the bill of lading.

HANDLING


Handling of all air moving equipment should be conducted by trained personnel and be consistent with safe handling practices. Verify the lift capacity and operating condition of handling equipment. When using hoisting equipment, only qualified and trained personnel should operate the equipment.

Units shipped completely assembled may be lifted with slings and spreader bars. (Use well-padded chains, cables or nylon straps, rated to lift the required weight.) On most units, lifting lugs are designed to protect the fan and fan housing from damage. Never lift a fan by the inlet or discharge flange, shafting or drives, impeller, motor or motor base, or in any other manner that may bend or distort parts. Never lift with slings or timbers passed through the fan inlets.

For fans provided without lifting lugs, use a forklift or pallet jack to handle the equipment. Consult a qualified person before lifting.

- 1. Maintain handling equipment to avoid serious personal injury and do not stand under the load.
- 2. If supplied, only use the provided lifting lugs to lift the equipment.
- 3. Ensure that the lifting equipment is rated for the capacity to be lifted.

Lift fans as shown

Lifting lugs are provided on most units.

Partial or disassembled units require special handling. All parts should be handled in a method which protects the coatings and parts from damage. Components should be handled such that forces are not concentrated to avoid bending or distortion.

The housing should be lifted using suitably rated spreader bars and padded chains or straps. Do not distort housing or side plates when lifting.

The shaft and impeller assembly may be lifted using a hoist and a spreader with slings around the shaft at either side of the impeller. Use the spreader bar to ensure that the slings do not push against the sides of the impeller as this may distort the impeller. Take care not to damage the shaft where the impeller or bearings will be mounted. Never lift or support the assembly by the impeller. Always support the assembly by the shaft when lifting or storing (see the section regarding proper storage of equipment). Do not support the shaft or the impeller on the housing sides. See the Fan Installation section for additional details.

Impellers shipped separately can be lifted by slings running between the blades or through the hub. Never lift the impeller by a single blade or single point on the flange/shroud. Do not to put a chain within the hub bore. Always transport impellers by lifting,

do not roll the impeller as this can damage coatings and change the balance of the impeller.

Bent shafting is a source of vibration and bearing failure, so be sure to handle the shaft with care. If the shaft is bent, replace the shaft. Any scratches on the shaft may be repaired with fine emery cloth or a stone. Remove only the displaced metal that forms a high point at the edge of the scratch.

- 1. Bearing pedestals should be lifted using straps or padded chains. Under no circumstance should an attached or separated bearing pedestal be lifted by the shaft, bearings, drives, motor or impeller.
- 2. Note some rotor assemblies may have an off-center CoG and therefore a qualified person should be consulted before lifting.

UNIT STORAGE

If fan installation is to be delayed, store the unit in an environmentally stable and protected area. During storage, the fan should not be subjected to vibration from external sources or bearing damage may occur. The unit should be reasonably protected from any accidental impacts. Cover the fan to protect coatings and to prevent any foreign material or moisture from entering the inlet or discharge. Take care to protect the motor, drives and bearings.

Extended storage requires monthly inspections. Check for corrosion or damage to the unit and for debris within the fan.

Bearings tend to take on moisture if the atmosphere in which they are stored is not at a constant temperature. To avoid corrosion, it is necessary to keep the bearings full of grease and to rotate them periodically. Even when full of grease, bearings will take on moisture, so it is necessary to purge the bearings with new grease to expel moisture every thirty days. It is recommended that the bearings be purged with grease while being rotated by hand. Do not use high pressure greasers as they may ruin the bearing seals. Spherical roller bearings with split pillow block housings must be opened up and grease removed before start-up. Remove old/excess grease and regrease the bearing in accordance with the bearing manufacturer's instructions.

The drives and belts should be removed if the fan is to be stored for a prolonged period. The drives should be labeled for service and stored in a dry place. Belts should be removed, coiled without kinks, placed in a heavy carton and stored in a dry, well-ventilated place. To prevent belt deterioration storage conditions should not exceed 85°F and 70% humidity. If belts show signs of deterioration, they should be replaced prior to startup.

Motors should be stored in a clean, dry and vibration-free location. The packaging should be opened up enough to allow air circulation around the motor. The winding temperature should be kept slightly above that of the surroundings to prevent condensation. This can be accomplished by energizing the internal heaters, if the motor is so equipped, or by using space heaters. If it is impossible to heat the windings, the motor should be wrapped tightly with a waterproof material which also encloses several bags of desiccant. Replace the desiccant regularly to prevent moisture problems. The motor rotor should also be rotated regularly (monthly) to assure the bearing parts are well greased. Shafts on motors equipped with shaft grounding rings must remain rust free. Failure to do so renders the grounding feature inoperative and may result in bearing failure under VFD operation. Consult the motor manufacturer for further detail on motor storage and start up after longer periods of storage. It may be necessary to regrease the bearings. If the fan's bearings or motor bearings have extended lubrication lines, it will be necessary to replace the grease by detaching from the motor/bearing and purging the line with new grease.

The Piezometer Ring Airflow Measuring System consists of a piezometer ring mounted at the throat and a static pressure tap mounted on the face of the inlet cone. The inlet cone of the fan is used as the flow nozzle and the flow can be calculated by measuring the static pressure drop through the inlet cone. The pressure drop is measured from the tap located on the face of the inlet cone to the piezometer ring in the throat. The inlet tap is connected to the high-pressure side of the transducer and the piezometer ring is connected to the low-pressure side.

CLICK TO VIEW OUR PIEZOMETER RING INSTALLATION VIDEO

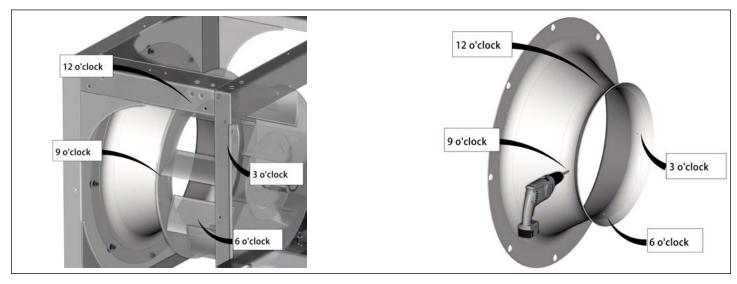
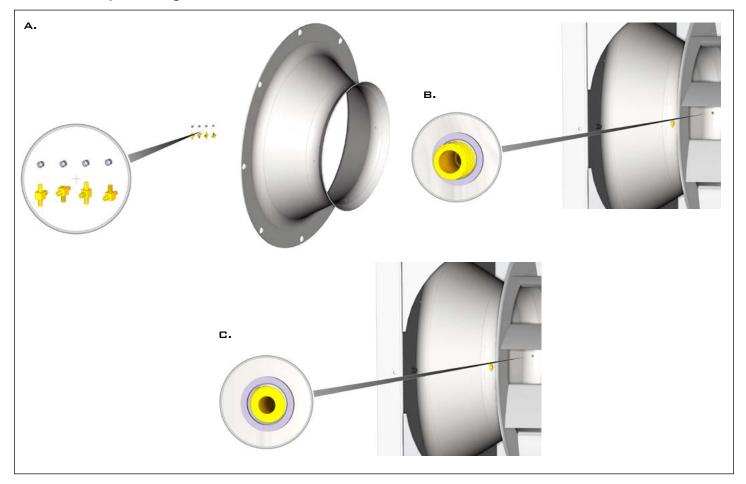
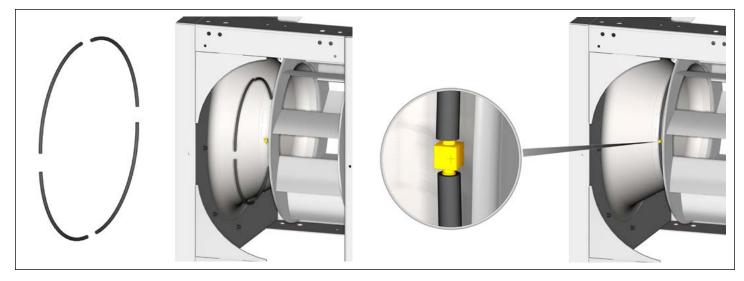

 Image: Clip
 Image: Clip

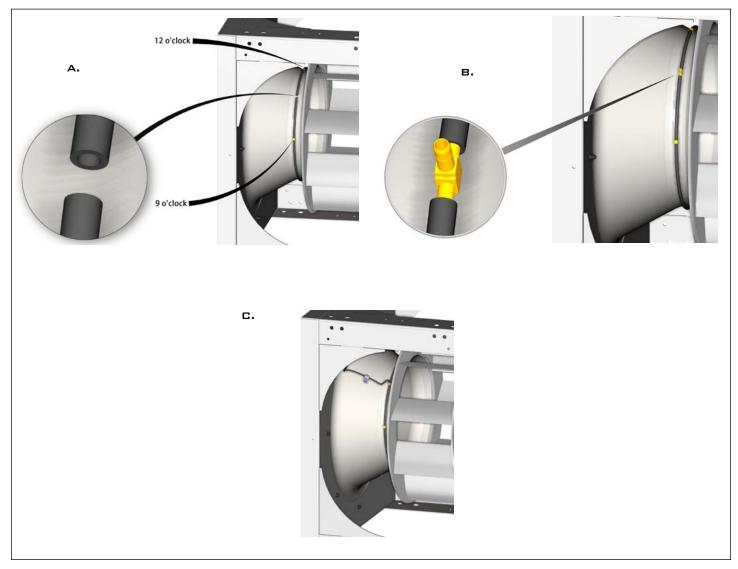
 Image: Clip
 Image: Clip


Verify that all items are included in the piezometer ring parts kit. (See image below.)

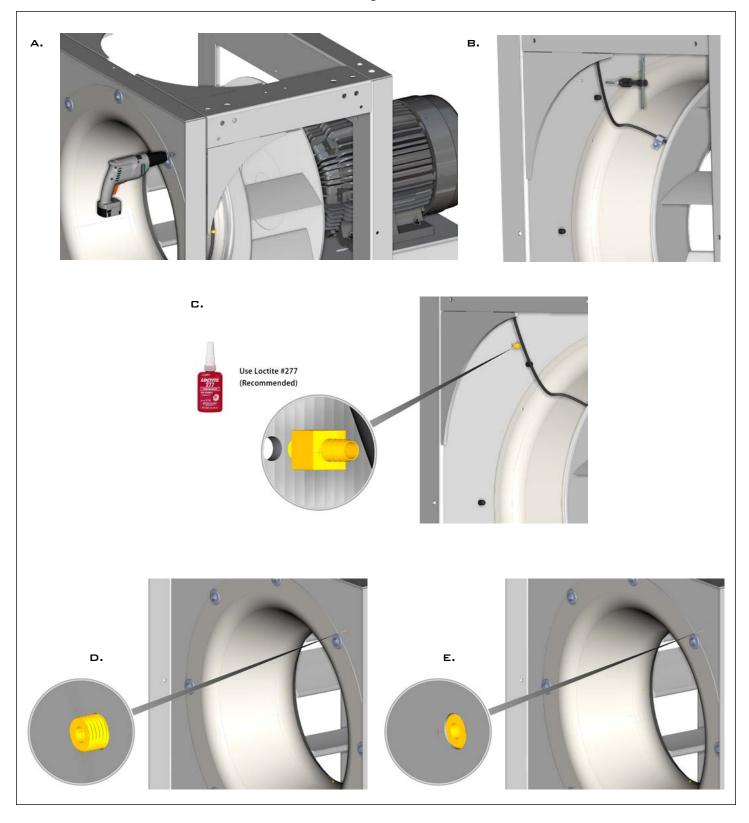
PIEZOMETER RING PARTS KIT


STEP 1: Locate and drill a pilot hole at 12, 3, 6 and 9 o'clock on the funnel.

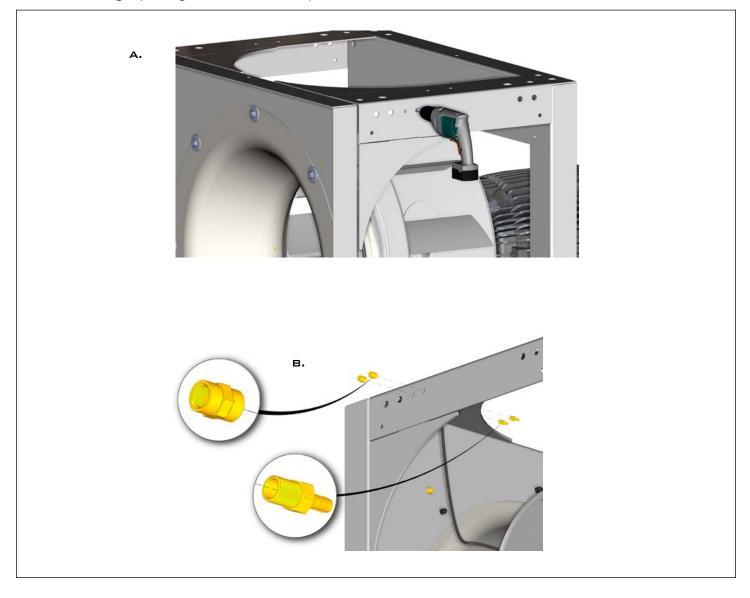
STEP 2: Insert rivnuts into these holes to accommodate the four (4) T fittings with threaded ends. Trim the fittings to match the contour of the funnel I.D. **Do not cut into the funnel contour. Debur/smooth the fittings after trimming. Obstructions in the airstream can impact readings.**



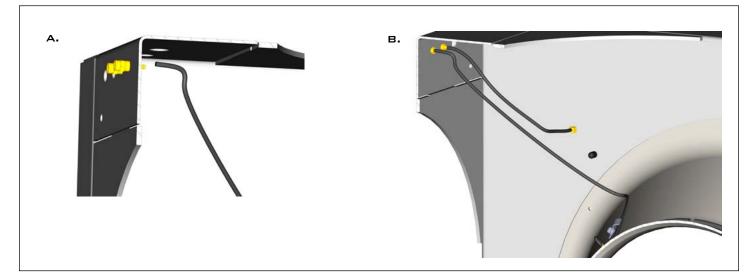
STEP 3: After the Loctite dries, cut the tubing into sections and slide them over the barbed ends of the installed T fittings. The tubing should be flush/snug against the funnel.



STEP 4: Locate the center of the 12 & 9 o'clock position and in this location cut the tubing and install the T fitting with three barbed ends. Add the last piece of tubing to this loop and leave loose. After installation of the barrel fittings, this will be run to the low pressure plug.



STEP 5: Locate the face of the funnel, drill a pilot hole (approximately at the 1:30 position when looking at the inlet) and tap it for the threaded male end/barbed end as shown. Trim the fitting to be flush with the inlet funnel on the INLET SIDE OF THE FAN.



STEP 6: On the side of the fan, drill two holes to accommodate the male end barrels with barbed end. Install these with the barb inside the airstream. If the barrel and battle male end do not tighten up, use the supplied washer as a spacer (usually one on each side of the housing depending on material thickness).

STEP 7: Attach the free piece of tubing from the T fitting in step 4 to the plug you will use as the LOW pressure point of Step 6. Use the remaining tubing to run from the fitting in Step 5 to the HIGH pressure point of Step 6.

STEP 8: Apply "LOW" and "HIGH" pressure labels.



MAINTENANCE (REFER TO SAFETY SECTION)

Develop a regular maintenance schedule according to your needs and the criticality of the fan. Periodic inspections, lubrication and observations of sound and vibration will help prolong the life of the fan. If changes are noted check bolt tightness, foundation integrity, cleanliness of the impeller and or motor, bearing lubrication and drive components. Always keep records of the maintenance that is performed.

MEASUREMENT OF AIRFLOW

The equations below are accurate for flow estimation for flows from 40% to 100% of wide-open volume. According to testing done previously at Twin City Fan & Blower, several factors affect the accuracy of this method of determining flow. The equations below assume the following:

- There are no vanes or other obstructions in or near the inlet
- Even flow entering the funnel (no pre-swirl)
- Standard impeller to inlet cone overlap
- Accurate determination of air density at the inlet
- Free inlet (consult Twin City Fan for ducted inlet factors)

NON-STANDARD DENSITY METHOD

One of the following equations is used to measure the flow:

ACFM = C1 * A * $\sqrt{(\Delta P/\rho)}$

- where: A = Actual inlet funnel throat area at pressure tap location (square feet) from tables on pages 13 and 14
 - ΔP = The differential in static pressure from the piezometer ring and the front pressure tap (inches w.g.)
 - ρ = Air density (pounds mass/cubic foot)
 - C1 = Value from Table 1 below

STANDARD DENSITY METHOD

The equations can be simplified by assuming standard density and assuming funnel dimensions match drawing dimensions. The following tables show the factor (F) for each fan size and type. The equation then becomes the following:

For standard air ($\rho = 0.075 \text{ lb/ft}^3$):

ACFM = F $\sqrt{\Delta P}$

TABLE 1: C1 VALUES

- where: F = factor from tables on pages 13 and 14
 - ΔP = The differential in static pressure from the piezometer ring and the front pressure tap (inches w.g.)

Product	C1 Free Inlet	C1* Ducted Inlet
EPFN/EPQN (Arr. 1 or 4), Sizes 122-165 EPLFN/EPLQN, Sizes 122-165	753.06	794.06
EPFN/EPQN (Arr. 1 or 4), Sizes 122A-165A ECLFN/ECLQN (Arr. 4), Size 122-165 EPLFN/EPLQN, Sizes 122MK2-165MK2 MPLFN/MPLQN, MPLFS/MPLQS, Sizes 122-165	887.78	949-49
EPFN/EPQN (Arr. 1 or 4), Sizes 182-982 ECLFN/ECLQN (Arr. 4), Size 182-270 EPLFN/EPLQN, Sizes 182-982 MPLFN/MPLQN, MPLFS/MPLQS, Sizes 182-365	692.03	740.14
EPF/EPQ (Arr. 3), Sizes 122-165	726.39	765.94
EPF/EPQ (Arr. 3), Sizes 122A-165A	856.34	915.87
EPF/EPQ (Arr. 3), Sizes 182-982	667.52	713.93
MPQN, Sizes 122-165	753.06	794.06
MPQN, Sizes 182-490	692.03	740.14

Product	C1 Free Inlet	C1* Ducted Inlet
APF/APQ	753.06	794.06
BC/BCS/BAF SWSI	735.42	786.56
BC/BAF DWDI	1470.84	1573.12
TSL/TFE	735.42	753.56
QSL/QFE/QIFE/TVIFE	696.00	735.83
BAE-SW **	720.40	735.80
BAE-DW **	1440.80	1471.60
RB Industrial (Std. Inlet Bell)	913.33	997.49
HIB/RTF	727.94	785.07
HAF	790.17	760.92
VBC/VAF	1414.00	NA

 Values for ducted C1 factors are based on duct diameter matching standard inlet collar diameter.

** BAE sizes smaller than 182 use BC/BCS/BAF factors.

TABLE 2: EPF/EPQ (ARRANGEMENT 3),EPFN/EPQN (ARRANGEMENT 1 & 4)EPLFN/EPLQN (ARRANGEMENT 4)

		-			
Size	EPF/EPQ Free Inlet F	EPFN/EPQN EPL-Series Free Inlet F	EPF/EPQ Ducted Inlet F	EPFN/EPQN EPL-Series Ducted Inlet F	A
122	911.46	944.92	961.07	996.36	0.344
122A, 122MK2	1194.48	1238.33	1277.52	1324.41	0.382
150	1163.68	1206.40	1227.04	1272.08	0.439
150A, 150MK2	1779.21	1844.54	1902.90	1972.75	0.569
165	1464.80	1518.58	1544.56	1601.26	0.552
165A, 165MK2	2138.81	2217.33	2287.49	2371.46	0.684
182	1757.39	1821.92	1879.58	1948.58	0.721
200	2108.38	2185.80	2254.97	2337.76	0.865
222	2617.81	2713.93	2799.81	2902.60	1.074
245	3168.67	3285.02	3388.97	3513.39	1.300
270	3856.03	3997.61	4124.12	4275.53	1.582
300	4770.07	4945.21	5101.71	5289.01	1.957
330	5757.23	5968.62	6157.51	6383.56	2.362
365	7032.01	7290.21	7520.92	7797.03	2.885
402	8555.41	8869.55	9150.23	9486.16	3.510
445	10444.42	10827.92	11170.58	11580.68	4.285
490	12669.80	13135.01	13550.69	14048.16	5.198
542	15541.11	16111.75	16621.62	17231.84	6.376
600	19004.71	19702.52	20326.03	21072.24	7.797
660	22994.79	23839.12	24593.53	25496.41	9.434
730	28128.04	29160.84	30083.67	31188.11	11.54

Note: Pressure tap locations for sizes denoted as '___A' and '___MK2' do not follow TCF&B convention. Consult factory for locations.

Size	SWSI Free Inlet F	DWDI Free Inlet F	SWSI Ducted Inlet F	DWDI Ducted Inlet F	А
105	641.87	1283.74	686.51	1373.01	0.239
122	872.90	1745.81	933.61	1867.21	0.325
135	1058.21	2116.41	1131.79	2263.58	0.394
150	1305.20	2610.39	1395.96	2791.92	0.486
165	1587.21	3174.41	1697.58	3395.16	0.591
182	1936.99	3873.98	2071.69	4143.38	0.721
200	2321.58	4643.16	2483.02	4966.04	0.865
222	2883.02	5766.04	3083.50	6167.00	1.074
245	3491.62	6983.24	3734.42	7468.84	1.300
270	4247.77	8495.55	4543.16	9086.32	1.582
300	5254.03	10508.05	5619.38	11238.86	1.957
330	6342.73	12685.46	6783.80	13567.59	2.362
365	7747.97	15495.94	8286.75	16573.50	2.885
402	9426.99	18853.98	10082.53	20165.06	3.510
445	11507.43	23014.86	12307.64	24615.28	4.285
490	13957.43	27914.86	14928.01	29856.02	5.198
542	17121.05	34242.10	18311.62	36623.24	6.376
600	20938.50	41877.00	22394.53	44789.06	7.797
660	25334.37	50668.73	27096.08	54192.16	9.434
730	30991.88	61983.75	33147.00	66294.01	11.54
807	37901.44	75802.87	40537.05	81074.09	14.11
890	46079.00	92158.01	49283.27	98566.54	17.16
982	56192.01	112384.00	60099.52	120199.04	20.93

TABLE 3: BC/BCS/BAF/BCV/BAV/DCV

TABLE 4: MPLFN/MPLFS/MPLQN/MPLQS

Size	Free Inlet F	Ducted Inlet F	А
122	1238.33	1324.41	0.382
150	1844.54	1972.75	0.569
165	2217.33	2371.46	0.684
182	1821.92	1948.58	0.721
200	2185.80	2337.76	0.865
222	2713.93	2902.60	1.074
245	3285.02	3513.39	1.300
270	3997.61	4275.53	1.582
300	4945.21	5289.01	1.957
330	5968.62	6383.56	2.362
365	7290.21	7797.03	2.885

Note: Pressure tap locations for Sizes 122, 150 and 165 do not follow TCF&B convention. Consult factory for locations.

TABLE 5: ECLFN/ECLQN (ARRANGEMENT 4)

Size	Free Inlet F	Ducted Inlet F	А
122	1238.33	1324.41	0.382
150	1844.54	1972.75	0.569
165	2217.33	2371.46	0.684
182	1821.92	1948.58	0.721
200	2185.80	2337.76	0.865
222	2713.93	2902.60	1.074
245	3285.02	3513.39	1.300
270	3997.61	4275.53	1.582

Note: Pressure tap locations for Sizes 122, 150 and 165 do not follow TCF&B convention. Consult factory for locations.

TABLE 6: APF/APQ

Size	Free Inlet F	Ducted Inlet F	А
121	944.92	996.36	0.344
141	1206.40	1272.08	0.439
161	1518.58	1601.26	0.552
181	1929.92	2035.00	0.702
201	2378.68	2508.19	0.865
221	2979.06	3141.26	1.083
251	3779.67	3985.45	1.375
281	4792.02	5052.92	1.743
321	6093.21	6424.95	2.216
351	7719.69	8139.98	2.807
391	9514.73	10032.75	3.460
441	11916.25	12565.02	4.334
491	14881.53	15691.74	5.412
551	18668.71	19685.12	6.789
631	24372.82	25699.79	8.864
711	30836.22	32515.09	11.21
791	38058.92	40131.02	13.84

TABLE 7: MPQN/MPQS

	-		
Size	Free Inlet F	Ducted Inlet F	А
122	944.92	996.36	0.344
150	1206.40	1272.08	0.439
165	1518.58	1601.26	0.552
182	1821.92	1948.58	0.721
200	2185.80	2337.76	0.865
222	2713.93	2902.60	1.074
245	3285.02	3513.39	1.300
270	3997.61	4275.53	1.582
300	4945.21	5289.01	1.957
330	5968.62	6383.56	2.362
365	7290.21	7797.03	2.885
402	8869.55	9486.16	3.510
445	10827.92	11580.68	4.285
490	13135.01	14048.16	5.198

(Sizes smaller than 182 use **TABLE 8: BAE-SW/BAE-DW** Table 3: BC/BCS/BAF)

SWSI DWDI SWSI DWD Size Free Inlet **Free Inlet** Ducted Inlet **Ducted Inlet** 182 1896.61 3874.31 0.721 1937.16 3793.22 4648.10 0.865 200 2275.41 4550.82 2324.05 2825.19 5650.38 2885.58 5771.16 1.074 222 245 3419.69 6839.38 3492.79 6985.58 1.300 4161.50 8322.99 8500.91 1.582 270 4250.46 10295.89 1.957 300 5147.95 5257.99 10515.99 330 6213.31 12426.62 6346.13 12692.26 2.362 7589.08 15178.15 15502.62 2.885 365 7751.31 402 9233.16 18466.31 9430.53 18861.07 3.510 11271.82 4.285 445 22543.63 11512.77 23025.55 490 13673.49 27346.98 13965.79 27931.57 5.198 6.376 16772.25 33544.50 17130.79 34261.59 542 600 20510.23 41020.47 20948.68 41897.36 7.797 660 24816.41 49632.82 25346.91 50693.82 9.434 730 30356.30 60712.61 31005.23 62010.46 11.540 80<u>7</u> 37116.76 75820.42 14.110 74233.52 37910.21 890 45139.88 90279.75 46104.83 92209.66 17.160 110113.94 982 112467.85 20.930 55056.97 56233.92

TABLE 9: QSL/QFE/QIFE/TVIFE

Size	Free Inlet F	Ducted Inlet F	А
150	1832.36	1937.23	0.721
165	2198.32	2324.14	0.865
182	2729.48	2885.70	1.074
200	3303.84	3492.93	1.300
222	4020.52	4250.63	1.582
245	4973.55	5258.21	1.957
270	6002.82	6346.39	2.362
300	7331.98	7751.62	2.885
330	8920.36	9430.92	3.510
365	10889.96	11513.24	4.285
402	13210.27	13966.36	5.198
445	16204.06	17131.49	6.376
490	19815.41	20949.54	7.797
542	23975.70	25347.94	9.434
600	29327.92	31006.49	11.54
660	35859.36	37911.75	14.11
730	43610.67	46106.71	17.16

TABLE 10: HIB/RTF

Size	Free Inlet F	Ducted Inlet F	А
180	1917.29	2067.76	0.721
200	2297.97	2478.32	0.865
220	2853.70	3077.66	1.074
240	3456.11	3727.35	1.300
270	4204.57	4534-55	1.582
300	5200.59	5608.74	1.957
330	6278.22	6770.95	2.362
360	7669.16	8271.05	2.885
400	9338.47	10071.37	3.513
450	11390.39	12284.33	4.285
490	13824.42	14909.38	5.201
540	16946.91	18276.93	6.376
600	20725.53	22352.11	7.797
660	25076.69	27044.75	9.434
730	30676.66	33084.21	11.541
800	37530.69	40476.16	14.120

TABLE 11: HAF

Size	Free Inlet F	Ducted Inlet F	А
220	3097.65	2982.99	1.074
240	3751.56	3612.69	1.300
270	4564.01	4395.06	1.582
300	5645.17	5436.20	1.957
330	6814.93	6562.66	2.362
360	8324.78	8016.62	2.885
400	10136.79	9761.55	3.513
450	12364.13	11906.44	4.285
490	15006.24	14450.75	5.201
540	18395.67	17714.71	6.376
600	22497.31	21664.52	7.797
660	27220.44	26212.81	9.434
730	33299.14	32066.49	11.541

Note: Pressure tap locations for the HAF do not follow TCF&B convention. Consult factory for locations.

TABLE 12: TSL/TFE

Size	Free Inlet F	Ducted Inlet F	А
90	641.87	686.51	0.239
122	872.75	894.27	0.325
150	1305.09	1337.28	0.486
165	1587.06	1626.20	0.591
182	1936.15	1983.91	0.721
200	2322.85	2380.14	0.865
222	2884.09	2955.23	1.074
245	3490.99	3577.10	1.300
270	4248.26	4353.05	1.582
300	5255.28	5384.90	1.957
330	6342.85	6499.31	2.362
365	7747.30	7938.40	2.885
402	9425.66	9658.16	3.510
445	11506.83	11790.66	4.285
490	13958.57	14302.88	5.198
542	17121.95	17544.28	6.376
600	20937.86	21454.32	7.797
660	25333.82	25958.71	9.434
730	30989.22	31753.60	11.54
807	37890.63	38825.25	14.11
890	46081.02	47217.66	17.16

TABLE 13: RB INDUSTRIAL

Size	Free Inlet F	Ducted Inlet F	А
905	410.40	448.22	0.123
907	828.77	905.13	0.249
909	1392.65	1520.97	0.418
911	2102.04	2295.74	0.630
913	2956.96	3229.43	0.887
915	3957.39	4322.05	1.187
917	5103.34	5573.59	1.530
919	6394.80	6984.06	1.917
921	7831.78	8553.45	2.348
923	9311.11	10169.10	2.792
926	11944.07	13044.67	3.581
929	14904.43	16277.82	4.469
933	19360.90	21144.93	5.805
937	24399.43	26647.75	7.316
941	30020.04	32786.27	9.001
945	36222.71	39560.50	10.861
949	43007.45	46970.43	12.896
954	51820.34	56595.39	15.538
960	64125.64	70034.58	19.228

TRANSDUCER SIZING FOR PIEZOMETER RING

Selecting a pressure transducer with the appropriate range is critical in order to get accurate measurements using the piezometer ring. Since most transducers list accuracy as a percent of full scale, if the range selected is too high, this can have a significant impact on the accuracy of the flow measurement. If the range is too low, there is risk of damaging the instrument and/or getting inaccurate readings or no reading at all.

The following steps are for sizing the pressure transducer for use with the piezometer ring flow measurement system:

- 1. Determine the maximum flow rate in CFM that the fan is expected to produce. This maximum should be the greater of normal, maximum and/or emergency conditions.
- 2. Find the formula for calculating the actual flow rate from page 12 of this document for the corresponding size and type of fan being used.
- 3. Calculate the pressure drop corresponding to the maximum flow rate determined in Step 1.
- 4. Select the pressure transducer with the smallest range that includes the pressure drop calculated in Step 3.
- 5. Now take the maximum range from the pressure transducer selected in Step 4 and use that to calculate the maximum flow rate that could be measured with this transducer.
- 6. Determine an acceptable safety factor for sizing the transducer.
- 7. Multiply the maximum flow rate from Step 1 by the safety factor. If the maximum flow rate from Step 5 is less than the result, bump up the transducer to the next largest size. Otherwise, the transducer from Step 4 should be used.

Example:

Company XYZ has a Size 270 BC SWSI fan to be installed with design conditions of 12,000 CFM at 5 inches w.g. and standard density. What size transducer should be used?

- 1. After speaking to the design engineer, it was determined that 12,000 CFM is the actual maximum and most of the time the fan will be running closer to 10,000 CFM. Therefore, 12,000 CFM will be used for the calculations.
- 2. The calculation for this fan type and size is: ACFM = 4247.77 * $\sqrt{(\Delta P)}$ for standard density Note that if the density was other than standard air, the formula would be different.
- 3. By rearranging the formula in Step 2, the following formula is obtained:
 - $\Delta P = (ACFM/4247.77)^{2}$
 - so, $\Delta P = (12000/4247.77)^2 = 7.98$ inches w.g.
- 4. For the pressure transducer models being considered, the ranges are 0-3, 0-6, 0-10 and 0-20. Therefore, for this flow rate the transducer model is the 0-10 inches w.g. model.
- 5. The maximum for this transducer is 10 inches, which corresponds to the following flow rate:
- ACFM = 4247.77 *√(10) = 13433 CFM
- 6. Since 12,000 CFM is the maximum and normal operating conditions are 10,000 CFM, a 10% safety factor should be plenty for this application.
- 7. From Step 1, 12000 CFM * 1.1 = 13200 CFM. This is less than 13433 CFM, so the 0-10 inch pressure transducer is acceptable.

TROUBLESHOOTING GUIDELINES

Use current safety practices when investigating fan or system performance problems. General safe practices and performance troubleshooting guidelines can be found in AMCA Publications 410 and 202, respectively. Fan application and field measurement procedures can be found in AMCA Publications 201 and 203.

Below is a list of possible areas to check when air or sound values do not match expectations. Most fan problems can be pinpointed to one of these common causes.

Air Capacity Problems

- Resistance of the system is not at design rating. If resistance is lower than expected, both airflow and horsepower may be up. If resistance is higher than anticipated, air volume will be down.
- 2. Fan speed is not at design speed.
- 3. Air density is not at the design value. Also check air performance measurement techniques/procedures.
- Devices for air modulation are closed or plugged. Also check filters.
- 5. Impeller mounted improperly or is rotating in reverse.
- 6. Parts of the system or fan have been damaged or need cleaning.

Noise Problems

- 1. Air performance is incorrect and the fan is not at design point of operation. Fan is being forced to operate in an unstable flow region near peak or to the left of the peak of the curve.
- 2. Bearing failure. Check bearings (lubrication).
- 3. Supply voltage high or inconsistent supply frequency. Adjustable frequency controllers can generate motor noise.
- 4. Objects which are installed in a high velocity airstream can generate noise. This includes flow sensors, turning vanes, etc.
- 5. Poor fan inlet conditions.
- 6. Acoustics or sound measurement procedure incorrect.

Vibration Problems


- 1. Misalignment of drive components. Check belt or coupling.
- 2. Poor foundation or mounting structure (resonances).
- 3. Foreign material attached to rotating components.
- 4. Damaged rotating components (bearings, shaft, fan, impeller, sheaves).
- 5. Broken, loose or missing set screws.
- 6. Loose bolts.
- 7. Vibration transmitted by another source.
- 8. Water accumulating in airfoil blades.
- 9. Fan is operating in stall or unstable flow region.

Motor Problems

- 1. Incorrect wiring.
- 2. Speed of fan too high.
- 3. Parts improperly installed; binding.
- 4. Bearings improperly lubricated.
- 5. WR² capability of motor too low for application.
- 6. Protection devices may be improperly sized.
- 7. VFD compatible electrically? Effective shaft grounding?
- 8. Is cabling and grounding correct?

Drive Problems

- 1. Belts improperly tensioned.
- 2. Drive alignment is poor. Check belt or coupling.
- 3. Coupling lubrication.

NOTICE

All fans manufactured by Twin City Fan & Blower are factory balanced prior to shipment. Installation variables, handling and movement of the fan during shipment may cause the rotating assembly to shift. Balance should be checked once the fan is installed. If a final trim balance is required, it is the end user's responsibility to bring the fan back to factory specifications. Final trim balancing is not the responsibility of Twin City Fan & Blower. Refer to the Vibration Guidelines table below.

VIBRATION GUIDELINES

Condition	Fan Application Category	Rigidly Mounted mm/s (in./s)	Flexibly Mounted mm/s (in./s)
Start up	BV-3	6.4 (0.25)	8.8 (0.35)
Start-up	BV-4	4.1 (0.16)	6.4 (0.25)
Alarm	BV-3	10.2 (0.40)	16.5 (0.65)
Aldfill	BV-4	6.4 (0.25)	10.2 (0.40)
Shutdown	BV-3	12.7 (0.50)	17.8 (0.70)
Shutdown	BV-4	10.2 (0.40)	15.2 (0.60)

Values shown are peak velocity, mm/s (inches/s), Filter out. Table taken from ANSI/ AMCA Standard 204-05, Table 6.3. AMCA defines BV-3 for applications up to 400 HP; BV-4 for applications over 400 HP.

INSTALLATION/START-UP CHECKLIST

Become familiar with the equipment by looking at the fan assembly drawing for special instructions and accessories.

INITIAL FAN CHECK

- Inspect fan for damage
- Check foundation
- Is the fan shimmed
- Are the bolts tight
- Check to see if the fan is distorted Note: Applies to direct or isolation mount.
- Check fan interior for debris & standing water

Fan Impeller

- Impeller clearance checked
- Impeller overlap checked
- Fasteners tight
- Impeller rotates freely

Springs (if equipped)

- Springs adjusted properly
- Flex joints allow movement
- Electrical conduit allows movement

Bearings

- Bearings aligned
- Bearings greased
- Note: Rotate while greasing
- Set screws tight (if equipped)

Lube Lines

 Lube lines been charged with grease prior to connecting to bearings

V-Belts (if equipped)

- V-belt drives aligned
- Sheaves retightened
- Belt tension correct
- Motor bolts retightened

Couplings (if equipped)

- Coupling aligned
- Coupling gap checked
- Coupling lubricated

Accessories

- Guards installed correctly, do not rub
- VIV/damper rotates freely (if equipped)
- Other accessories per drawing

Verify that proper safety precautions have been followed. Electrical power must be locked off.

ELECTRICAL COMPONENTS

- Motor wired for proper voltage and starter
- Motor grounded
- O Appropriate starter and heaters
- Leads are properly insulated
- Accessories wired per instructions supplied.

ENERGIZE

- Energize motor long enough to start assembly rotating, shut down
- Verify direction of impeller rotation, rewire if necessary Note: Refer to impeller rotation section
- Run the fan up to speed
- Check for excess vibration and listen for unusual noise. Refer to the Vibration Guidelines table in the troubleshooting guidelines section for vibration limits
- Bearing temperatures should stabilize after a few hours. Less than 200°F Note: Use sense of smell to identify possible electrical, belt issues.

AFTER ONE WEEK

- Verify bolt tightness.
- Verify belt tension and adjust as necessary

NOTICE

Always observe site specific and regulatory safety precautions.

SERIAL NUMBER:

COMPLETED BY:

DATE COMPLETED:

FAN MAINTENANCE LOG

Model Number_____

Serial Number _____

Date	Completed Maintenance	Performed By	Comments

FAN MAINTENANCE LOG

Model Number_____

Serial Number _____

Date	Completed Maintenance	Performed By	Comments

TWIN CITY FAN & BLOWER | WWW.TCF.COM

5959 TRENTON LANE N | MINNEAPOLIS, MN 55442 | PHONE: 763-551-7600 | FAX: 763-551-7601

 $\ensuremath{\mathbb{C}2005\text{-}2021}$ Twin City Fan Companies, Ltd.